Abstract

Titanium alloys manufactured via additive manufacturing are suffering from coarse columnar grains due to the insufficient spontaneous nucleation rate during solidification. In this study, a newly designed Ti–2Fe-0.1B alloy with higher nucleating agent were introduced and manufactured by laser melting deposition method. The manufactured part is presenting a fully equiaxed grain morphology with 779 MPa on ultimate tensile strength. In order to reveal the mechanism of equiaxed grain formation and its influence on mechanical properties, a comprehensive study of microstructure evolution was carried out on Ti–2Fe-0.1B alloy manufactured via casting, forging and laser melting deposition. The results indicate that cooling speed are playing an important role on TiB morphology and Ti–2Fe-0.1B grain size simultaneously. The TiB formed from fast cooling speed are presenting a 3D quasi-network structure and improves the ultimate tensile strength of laser melting deposited part by 1.7 and 1.5 times when compared with casting and forging parts correspondingly. The study reveals that B addition is a sufficient method to control equiaxed grain formation in additive manufacturing of Ti–Fe alloy and promotes B addition as grain morphology controlling method in other additive manufactured titanium alloys in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call