Abstract

The present investigation was carried out to study the effect of manganese and copper addition, singly as well as in combination, on the microstructure, micro-segregation, and mechanical properties of ductile irons. Alloy A (3.18C, 2.64Si, 0.45Mn), alloy B (3.35C, 2.51Si, 0.82Mn), alloy C (3.16C, 2.80Si, 1.08Mn, 0.56Cu), and alloy D (3.18C, 3.00Si, 1.04Mn, 1.13Cu) were melted and cast in the form of Y-block test pieces. The cast microstructures varied from ferrito-pearlitic in alloys A, B, and C to pearlitic in alloy D. However, on XRD analysis and SEM examination, the presence of martensite patches was also detected. There was a marginal decrease in nodule count in alloy B. In alloys C and D, nodule counts were higher, but the proportion of ferrite decreased drastically. Alloy D was found to be the strongest (UTS ≈ 800 MPa, El = 5%) with alloys A and C coming next in strength; while alloy B was weakest of the four. The presence of martensite patches in association with pearlite appears to be responsible for low toughness of these alloys. Microprobe analysis shows some silicon segregation near the graphite nodules and practically little segregation of manganese. Elemental mapping by FE-SEM does not indicate any manganese segregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.