Abstract
In order to improve the mechanical properties of magnesium, dispersion strengthening with α-alumina particles (pAl2O3) is experimentally investigated as an application of powder metallurgy. The trial process consists of milling, compacting and hot-pressing. The microstructure of hot-pressed discs of magnesium composites were investigated using optical microscopy, scanning electron microscopy, x-ray diffraction (XRD) and electron probe micro analysis, and the density, surface hardness, and bending stress for deflection were also examined. All of the mechanically alloyed (MA) prepared powders were composed of only magnesium (Mg) and alumina (Al2O3). Although the particle size of the MA powders varied, the mean values were approximately 80 μm and were approximately the half size of the raw Mg powder. Not only Mg powder, but also pAl2O3 became finer with processing, and the pAl2O3 was almost uniformly dispersed in the Mg powder. In addition, the fine pAl2O3 was almost uniformly dispersed within the Mg of the pAl2O3 dispersion strengthened (ODS) magnesium discs. For all discs, a small quantity of magnesium oxide (MgO) was identified along with Mg and Al2O3. However, in only the 22.7 vol% pAl2O3/Mg disc, an XRD peak assigned to an Al–Mg intermetallic compound (Al12Mg17) was detected, in addition to Mg, Al2O3 and MgO. It is proposed that Al12Mg17 was produced by the solid-state reaction of Mg and Al2O3, and appeared at the interface between the regions of only Mg and regions where pAl2O3 is dispersed in Mg. The density of the discs was above the theoretical density for all pAl2O3 content; the density for the highest pAl2O3 content of 22.7 vol% was approximately 0.8 times greater than that of practical Al alloys. The 22.7 vol% pAl2O3 disc had a maximum hardness value of 280 HV. This value is much higher than that of both pure Mg ingot and AZ91D. The bending stress for deflection decreased with an increase in the pAl2O3 content. The reason for this is considered to be that the discs become harder and more brittle, and voids are more easily formed in the discs; therefore, cracks that are generated on the specimen surface propagate more easily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.