Abstract

Effect of solid solution elements on microstructure evolution and mechanical properties was investigated using a high purity Al (purity 99.99%) and Al-0.5 at.% X ( X = Si, Ag, Mg ) alloys deformed by accumulative roll bonding (ARB) process up to 7 cycles (equivalent strain of 5.6) at ambient temperature. The ARB-processed high purity Al showed the equiaxed microstructure having mean grain size of 750 nm. On the other hand, the microstructure of the ARB-processed Al-0.5at.%X alloys showed lamellar boundary structures elongated along RD. The mean lamellar boundary spacing significantly differed depending on the alloying elements, which suggested that solute atoms had a significant effect on microstructure evolution. The difference in the grain size was regarded to be caused by the difference in recovery processes in the alloys. The tensile strength of the alloys increased with increasing the number of ARB cycles. In the Al-Si and Al-Ag alloys, the post-uniform elongation increased with increasing the number of the ARB cycles. On the other hand, the elongation of the Al-Mg hardly changed during the ARB process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.