Abstract

Polymer based photonic crystal fibers with low cost manufacturability, and the mechanical and chemical flexibility offer key advantages over traditional silica based photonic crystal fibers. PMMA photonic crystal fiber was fabricated by stacking an array of PMMA capillaries to form a preform, and followed by fusing and drawing into fiber with a draw tower. The air hole diameter and fraction of photonic crystal fiber can be manipulated by the thickness of PMMA capillaries and drawing temperature. The measurement of mechanical properties was performed by universal testing machine. The air core guiding phenomena was observed in air-core PMMA photonic crystal fiber. The ultimate tensile strength of PMMA photonic crystal fiber increases with the increase of the air-hole fraction. The mechanical strengths of all the microstructured optical fibers are higher than those of traditional PMMA fibers. This can be attributed to the introduction of more cellular interfaces which hinder the crack propagation and hence improve the mechanical strength. The plastic extension of PMMA microstructured optical fiber decreases with the increase of the air-hole fraction. Overall, the mechanical flexibility of PMMA microstructured optical fiber is superior than that of traditional PMMA optical fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.