Abstract

The microstructure and local micromechanical properties of a Ni-based superalloy thin film produced by magnetron sputtering using ERBO/1 sputter targets were investigated. The thin film consists of columnar nanograins (an average size of ~ 45 nm) with mostly < 111 > orientation. Inside the nanograins, very fine nanotwins with an average thickness of ~ 3 nm are present. In-situ micropillar compression tests, complemented by nanoindentation, were conducted to evaluate the mechanical characteristics. The microhardness and Young’s modulus of the thin film correspond to ~ 11 and 255 GPa, respectively, the critical strength to ~ 4 GPa. The plastic deformation of the micropillars occurs through the formation of a shear band initiating at the top of the pillar. Inside the shear band, globular grains with random orientation form during the deformation process, while the regions near to the shear band remained unaffected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call