Abstract

In the present paper we report on a new Mo-12Hf-24B (in at. %) alloy which was processed by crucible-free zone melting (ZM) from cold pressed elemental powders. The alloy was solidified using crystallization rates of 90 mm/h, 100 mm/h and 110 mm/h. SEM investigations of the zone molten alloys showed well-aligned arrangements of the microstructural constituents. XRD analyses revealed the following phases: MoSS, Mo2B, HfB and a new phase, which is provisionally indicated as Mo2HfBx. The phases Mo2B and Mo2HfBx have a preferred crystallographic orientation parallel to the growth direction. High temperature compression creep strength at about 1100 °C was evaluated and compared with the commonly used Ni-based superalloys CMSX-4 and CMSX-10 as well as a directionally solidified Mo-Si-B materials. In comparison to the reference alloys, the creep resistance of ZM Mo-Hf-B materials was found to be substantially improved due to the construction and anisotropic arrangement of the incorporated compound phases in these Mo-based alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.