Abstract

Effects of 1.5 wt.% Ag addition and solid solution + artificial ageing at 160 °C on the microstructure and mechanical properties of a Mg-5Sn alloy have been studied. The results show that Ag addition has significantly hardened the solution-treated Mg-5Sn alloy. During the ageing process, the hardness increase rate and the strength and ductility of the Mg-5Sn alloy at each state are also improved by Ag addition. The improved strengthening behavior is primarily attributed to the refinement distribution of the Mg2Sn precipitates, the enhanced precipitation process, and the synergistic strengthening effect of Mg2Sn and a metastable plate DO19 phase formed at lower ageing temperature. For each solution-treated alloy, the strength and ductility are higher than the corresponding cast ones. Ageing further enhances the yield strength, and the ductility of the Mg-5Sn-1.5Ag alloy is also increased after ageing. The fracture surfaces of the both peak-aged alloys exhibit the characteristic of a mixture of quasi-cleavage and ductile fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.