Abstract

A new low melting point filler metal, Al-Si-Cu-Ni-RE, was developed for the furnace brazing of aluminum alloy 6063. Flux-assisted brazing was conducted at 560 °C using the new filler metal and AlF3-CsF-KF flux. Microstructure of the brazed joints were studied by means of SEM, TEM, and EDS. Shear strength and micro-Vickers hardness of joints had been tested. Results show that sound joints could be obtained with the filler metal and the flux. Microstructure characterization of the brazed joint shows dendritic CuAl2 phase was distributed evenly and Si-phase was spheroidized and refined, which was embedded in CuAl2 dendrites with modification of rare-earth element. Shear strength test results show that the joints with Al-Si-Cu-Ni-RE filler metal achieved average shear strength of 62.5 MPa, 14.5% more than the shear strength of brazed joints with Chinese HL401 filler metal. The micro-Vickers hardness of joint after T6 treatment is about 83 HV. The hardness of the joints after just brazing and after solution treatment was higher than the hardness of the base metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call