Abstract
High entropy alloy (HEA) of FeCoNiTiAl and Inconel 718 superalloy were firstly transient liquid phase (TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bonding time on microstructure evolution and mechanical properties of the TLP joints were investigated. Owing to the complete isothermal solidification of the joints bonded for 30 min ∼ 120 min at 1100 °C, no athermally solidified zones (ASZs) formed by eutectic phases were observed in the welded zone. Thus the TLP joints were only composed by the isothermally solidified zone (ISZ) and two diffusion affected zone (DAZ) adjacent to the dissimilar base metals and the negative effect of the ASZ on joint properties can be avoided. In addition, the increase of the bonding time can also make the TiB2 borides precipitated in the DAZ near HEA and the brittle borides or carbides in the DAZ near IN718 alloy decrease and reduce the possibility of the stress concentration happened in the joints under loading. Therefore, the highest shear strength (632.1 MPa) of the TLP joints was obtained at 1100 °C for 120 min, which was higher than that of the joint bonded for 30 min, 404.2 MPa. Furthermore, the extension of the bonding time made the fracture mechanism of the joint be transformed from the intergranular fracture to the transgranular fracture. However, as the brittle borides in the DAZ near IN718 can not be eliminated completely and refining of grains also happened in such region, all the TLP joints fractured inner the DAZ near IN718 alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.