Abstract

The scientific goal of this paper is to study and explain the relationship between the microstructure of a ceramic-intermetallic composite fabricated by consolidating a mixture of Al2O3 and NiAl-Al2O3 using the PPS technique and its basic mechanical properties. Six series of composites were manufactured. The obtained samples differed in the sintering temperature and content of compo-powder. The base powders, compo-powder, and composites were investigated using SEM equipped with an EDS and XRD. Hardness tests and KIC measurements were applied to estimate the mechanical properties of the fabricated composites. The wear resistance was evaluated using a "ball-on-disc" method. The results demonstrate that the density of the obtained composites increases with the increased temperature of the sintering. The content of NiAl + 20 wt.% Al2O3 did not have a determining effect on the hardness of the manufactured composites. The highest hardness, contacting 20.9 ± 0.8 GPa, was found for the composite series sintered at 1300 °C and 2.5 vol.% of compo-powder. The highest KIC value from all the studied series equaled 8.13 ± 0.55 MPa·m0.5 and was also achieved for the series manufactured at 1300 °C (2.5 vol.% of compo-powder). The average friction coefficient during the ball-friction test with the Si3N4 ceramic counter-sample was between 0.8 and 0.95.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.