Abstract

The main aim of this research is to analyze the mechanical performances of the influence of silicon carbide (SiC) particles with AA6351 aluminum alloy. The aluminum metal matrix composites were prepared with liquefying stir casting to produce the metal matrix composites (MMCs). The following weight fractions are AA6351-0% SiC, AA6351-2.5% SiC, AA6351-5% SiC, and AA6351-7.5% SiC utilized to compose the MMCs. The mechanical performances like hardness, flexural, impact, compressive, and tensile studies were investigated on the processed MMCs. The scanning electron microscope (SEM) was employed to examine the strengthened particle of SiC. During the SEM examinations, uniformly dispersed SiC-strengthened particles were analyzed. The entire MMCs specimens achieve greater mechanical characteristics; the specimen fabricated with a maximum volume fraction of 7.5 wt% of SiC accumulates higher strength than the other volume fractions samples. The SiC plays a very tedious role in improving mechanical attributes. The fabricated MMCs were highly utilized in the applications of automotive and aerospace usages. This application is fully employed with lesser weight and maximum strength conditions to fulfill the mechanical performances. The stir-casting process was a highly efficient technique to compose better MMCs to achieve greater strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call