Abstract
AbstractHigh-purity nano-polycrystalline diamonds have been synthesized by direct conversion from graphite and various non-graphitic carbons under static high pressures and high temperatures. The polycrystalline diamond synthesized from graphite at ≥15 GPa and 2300-2600 °C has a mixed texture comprising a homogeneous fine structure (particle size: 10-30 nm, formed in a diffusion process) and a lamellar structure (formed in a martensitic process), and has a very high Knoop hardness of 120-145 GPa. In contrast, the polycrystalline diamonds made from the non-graphitic carbons at ≥15 GPa and 1600-2000 °C have a single texture consisting of a very fine homogeneous structure (5-10 nm, formed in a diffusion process) without a lamellar structure. The hardness values of the nano-polycrystalline diamonds made from non-graphitic carbons (70-90 GPa) are significantly lower than that of polycrystalline diamond made from graphite. The investigation of the microstructure beneath the indentation of these nano-polycrystalline diamonds revealed that the existence of the lamellar structure and the bonding strength of the grain boundary have a decisive effect on the hardness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.