Abstract

• Effect of extrusion temperature on properties of Mg–Zn–Ca–(Mn) alloys was studied. • Addition of Mn and decrease in extrusion temperature caused grain refinement. • Addition of Mn significantly reduced the corrosion rate of the alloys. • Mg–2 wt% Zn–0.7 wt% Ca–1 wt% Mn showed excellent mechanical and corrosion properties. Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal. Among Mg-based alloys, Mg–Zn–Ca–(Mn) alloys have been extensively investigated for medical applications because the constituent elements of these alloys, Mg, Zn, Ca, and Mn, are present in human tissues as nutrient elements. In this study, we investigated the effect of the hot extrusion temperature on the microstructure, mechanical properties, and biodegradation rate of Mg–Zn–Ca–(Mn) alloys. The results showed that the addition of Mn and a decrease in the extrusion temperature resulted in grain refinement followed by an increase in the strength and a decrease in the elongation at fracture of the alloys. The alloys showed different mechanical properties along the directions parallel and perpendicular to the extrusion direction. The corrosion test of the alloys in the Hanks’ solution revealed that the addition of Mn significantly reduced the corrosion rate of the alloys. The Mg–2 wt% Zn–0.7 wt% Ca–1 wt% Mn alloy hot-extruded at 300 °C with an ultimate tensile strength of 278 MPa, an yield strength of 229 MPa, an elongation at fracture of 10%, and a corrosion rate of 0.3 mm/year was found to be suitable for orthopedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.