Abstract

A 10 nm Pd/Si dual thin film was developed as a seed layer for a Co/Pd multilayer in double-layered perpendicular magnetic recording media. The Pd/Si seed layer, sputter deposited under Ar sputtering gas containing N2 and postannealed at 400 °C, markedly reduced intergranular exchange coupling of the Co/Pd multilayered film, resulting in a decrease in both the slope parameter, defined as 4π(dM/dH)H=Hc, and the magnetic cluster size. Consequently, medium noise was essentially reduced, thereby improving the signal-to-noise ratio of the Co/Pd recording media on a CoZrNb soft magnetic underlayer. The addition of N2 gas effectively decreased the grain size of Pd in the seed layer. A Pd/Si seed layer prepared with both processes exhibited a granular structure of fine Pd-rich grains surrounded by a Si-rich amorphous region, which provided nucleation sites for the growth of well-separated Co/Pd multilayered grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.