Abstract

Microstructure, hydrogen storage properties and thermal stabilities of V-Ti-Fe alloys prepared by arc-melting were studied in this work. It was confirmed that V60Ti30Fe10, V70Ti20Fe10 and V80Ti10Fe10 alloys are a body-centered cubic (bcc) single phase, while V75Ti10Fe15 alloy consists of the bcc main phase and C14-typed Laves secondary phase. Experimental results show that the V80Ti10Fe10 alloy reached the largest hydrogen absorption capacities which were about 1.9 wt.% and 1.62 wt.% at 423 K and 473 K, while V75Ti10Fe15 alloy with C14-typed Laves phase showed better hydrogen desorption capacities with 1.31 wt.% at 423 K and 1.35 wt.% at 473 K, respectively. In addition, the DSC measurements indicate that the thermal stability of V75Ti10Fe15 alloy with C14-typed Laves phase decreased, which is very beneficial to the improvement of dehydrogenation rate in the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.