Abstract

Wide gap brazing (WGB) of X-40 cobalt based superalloy was conducted in this study using BNi-9 braze alloy with X-40 and IN738 additive alloys. A groove was machined into X-40 bars with a nominal width of 6·35 mm before filler application. Following brazing at 1200°C for 15 min, the microstructure of the as brazed joints was examined using SEM, EDS and nanoindentation technique. Both WGB joints with X-40 and IN783 additive alloys contained primary matrix phase in addition to a number of boron containing phases which assumed either eutectic or discrete forms. Nanoindention testing revealed that these boron containing phases exhibited hardness values several times higher than the base alloy and matrix phase contributing to the embrittlement of the braze joint. Porosity was also observed in both types of WGB braze joints, the degree of which was greatest in the braze joints with IN738 additive alloy. Tensile testing at 950°C showed that the yield strength of both WGB joints was higher than that of the baseline specimens while the ultimate tensile strength of the WGB joints was lower than that of the baseline X-40. The ductility of the WGB joints was significantly inferior to that of the baseline X-40, particularly for WGB with IN 738 additive alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.