Abstract

11-12Cr oxide dispersion strengthened (ODS) tempered martensitic steels underwent manufacturing tests and their ferritic–martensitic duplex structures were quantitatively evaluated by three methods: high-temperature X-ray diffraction (XRD), electron probe microanalyzer (EPMA), and metallography. It was demonstrated that excessive formation of residual-α ferrite, due to increasing Cr content, could be suppressed by appropriately controlling the concentration of the ferrite-forming and austenite-forming elements on the basis of the parameter “chemical driving force of α to γ reverse transformation. 11Cr-ODS steel containing a small portion of residual-α ferrite was successfully manufactured. In the as-received condition, this 11Cr-ODS steel was shown to have satisfactory creep strength and ductility, both as high as those of the 9Cr-ODS steel, while its 0.2% proof strength at 973K was lower than in the 9Cr-ODS steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.