Abstract
The microstructural and high-temperature mechanical characteristics of directionally solidified rods of Al2O3–Er3Al5O12–ZrO2 ternary eutectic oxides processed by the laser-heated floating zone method at different growth rates have been investigated. The eutectic microstructure displayed an entangled three-dimensional network of Al2O3 and Er3Al5O12 phases of similar sizes, elongated along the growth direction; the minority zirconia phase formed small fibers into the alumina phase. The interphase spacing is reduced with increasing solidification rate, changing about 2μm down to 200nm. These microstructural features are essentially the same exhibited by Al2O3–Y3Al5O12–ZrO2 composites processed by the same technique. Compressive deformation tests performed at 1400°C at constant strain rate showed that the creep resistance decreased when increasing the growth rate due to the refinement of the microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.