Abstract

Permanent magnets made from Sm(Fe,Co) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sub> -based compounds are being actively pursued through nanostructuring and powder metallurgy. This study was aimed at the development of hard magnetic properties in bulk as-cast alloys and in melt-spun alloys for very low wheel speeds. Slower solidification rates and alloying with Zr promote the tetragonal ThMn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sub> -type crystal structure, whereas higher solidification rates and alloying with B replace the ThMn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sub> structure type with the TbCu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sub> structure type. When introduced simultaneously, Zr and B dramatically reduce the alloy solidification rates required for both the refinement of the 1:12 crystallites and their replacement with the 1:7 phase. In bulk arc-melted alloys, this allowed for a microstructure of separated 1:12 crystallites 1– <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3~\mu \text{m}$ </tex-math></inline-formula> in size, although, because of the ferromagnetic nature of a minority phase, the coercivity of these fine-grained alloys reached only 0.73 kOe. A moderately accelerated solidification further refined the 1:12 crystallites and increased the coercivity; a Sm <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.7</sub> Zr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.4</sub> (Fe,Co) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10.8</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.7</sub> B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.5</sub> alloy exhibited a coercivity of 1.5 kOe and a maximum energy product of 3.4 MGOe when it was melt-spun into a 0.26 mm-thick ribbon. A more rapid solidification suppressed the 1:12 phase, and after annealing at 800 °C–850 °C, the alloys modified with Zr and B developed reasonably high coercivity and maximum energy product even when melt-spun at a wheel speed of 6 m/s. For the above-mentioned alloy, these values were 4.1 kOe and 7.8 MGOe, respectively. A similarly processed very-Sm-lean Sm <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.5</sub> Zr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.6</sub> (Fe,Co) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10.6</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.7</sub> B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.7</sub> alloy exhibited a remanence of 8.8 kG and an energy product of 7.4 MGOe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.