Abstract
The isothermal grain growth of SnO2 thin films prepared by pulsed laser deposition techniques was investigated at Si (100) substrate temperatures between 300 and 450°C with 50°C intervals for different annealing times. X-ray diffraction patterns proved that the average grain sizes are in the range of 2.4–27.8nm. The grain growth data were analyzed using two different models. The first model, assuming normal grain growth as that in conventional polycrystalline materials, yields large grain growth exponent (n) and extremely low activation energy (Q). Although it can describe the evolution of grain sizes, it fails to give satisfactory physical interpretation of n and Q, both beyond the theoretical predictions. The second model is based on the structural relaxation of the interface component in nanocrystalline materials. In this case, the ordering of distorted interfaces by structural relaxation proceeds with grain growth. This structure relaxation model not only describes the evolutions of grain growth well, but also makes reasonable attribution of the low activation energy to the short-range rearrangement of atoms in the interface region as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.