Abstract

AbstractIn this study, a polymeric N‐functionalized mutilithium (N‐M‐Li) compound was prepared from commercial divinylbenzene (DVB) and lithiohexamethyleneimine (LHMI), and star‐shaped copoly(styrene–butadiene–isoprene) was obtained by anionic polymerization using preformed N‐M‐Li as initiator, tetramethylethlenediamine (TMEDA) as polar modifier, and cyclohexane as solvent. The microstructure and the glass–transition temperature (Tg) of copolymers were characterized by 1H NMR and differential scanning calorimetry (DSC), respectively. It showed that the non‐1,4‐structure content and the Tg of copolymers increased with the increase of TMEDA dosage or the decrease of polymerization temperature; however, the effects of the initiator concentration and DVB dosage on them were not obvious. We also obtained the relationships between the non‐1,4‐structure content of copolymers and the Tg of copolymers respectively, and between the ln(T/Li) (TMEDA/N‐M‐Li, mole ratio) and the non‐1,4‐structure content of copolymers, as follows: Tg (°C) = 0.6258Cnon 1,4−55.93 and Cnon 1,4 = 20.79 ln K+59.11, where K is T/Li value. Therefore on the basis of experimental results, we realize polymer design according to our practical requirements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5848–5853, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call