Abstract

The microstructure and Gd-rich phase evolution of as-cast AZ31-xGd (x=0, 1.5 wt.%, 2.0 wt.% and 2.5 wt.%) magnesium alloys during semi-solid isothermal heat treatment were investigated deeply in the present work. Results showed that the lamellar (Mg,Al)3Gd phases transformed into the particle-like Al2Gd phases in AZ31 magnesium alloys with Gd addition during semi-solid isothermal heat treatment, leading to yielding more spherical α-Mg grains. When Gd content is 2.0 wt. %, the size of semi-solid spherical grains reaches the minimum. The main mechanism of grain refinement lies in the remelting of dendritic branches as well as the auxiliary effect of a small number of Al2Gd particles as grain refining inoculants. Meanwhile, Al2Gd particles enriched at the solid-liquid interfaces can remarkably retard the growth rate of α-Mg grains. A reduction of deformation resistance has been successfully achieved in AZ31-2.0Gd magnesium alloy after semi-solid isothermal heat treatment, which shows a moderate compressive deformation resistance (230 MPa), comparing to the as-cast AZ31 magnesium alloy (280 MPa) and semi-solid AZ31 magnesium alloy (209 MPa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.