Abstract

This paper focuses on the microstructure and tribological properties of novel hardfacing alloy based on Fe-C-Mn-B doped with Ni, Cr, and Si. The 4 mm-thick coating was deposited on the AISI 1045 carbon steel by the MIG-welding method using flux-cored wires in three passes. The transition zone thickness between the weld layers was ~80 μm, and the width of the substrate-coating interface was 5-10 μm. The following coating constituents were detected: coarser elongated M2B borides, finer particles of Cr7C3 carbides, and an Fe-based matrix consisting of ferrite and austenite. The nanohardness of the matrix was ~5-6 GPa, carbides ~16-19 GPa, and borides 22-23 GPa. A high cooling rate during coating fabrication leads to the formation of a fine mesh of M7C3 carbides; borides grow in the direction of heat removal, from the substrate to the friction surface, while in the transition zone, carbides become coarser. The dry sliding friction tests using a tribometer in PoD configuration were carried out at contact pressure 4, 7, 10, and 15 MPa against the AISI 1045 carbon steel (water-quenched and low-tempered, 50-52 HRC). The leading wear phenomenon at 4 and 7 MPa is fatigue, and at 10 and 15 MPa it is oxidation and delamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call