Abstract

Microstructure and fracture mechanical behaviour of injection-moulded, longer glass fibrereinforced polypropylene (Verton* aspect ratio ≈ 320) were studied as a function of fibre volume fraction and compared to that of shorter fibre-filled polypropylene (aspect ratio ≈ 70). Toughness was measured using instrumented notched lzod and falling weight impact tests, as well as compact tension specimens. It was found that the addition of longer fibres generally increased the toughness of the material, although more significant increases were seen in the impact tests than were seen in the compact tension test. For the latter results, a correlation between toughness improvement and microstructural details was performed on the basis of the microstructural efficiency concept, a semi-empirical approach of the formKc,C = (a* +nR)Kc,M, where,Kc,C andKc,M are the fracture toughnesses of the composite and the matrix, respectively,a* is a matrix stress correction factor,n is a scaling parameter andR is a fibre reinforcement effectiveness factor. The latter corrects for differences in the composite microstructures, and incorporates effective fibre orientation factors, layering of injection moulded parts, and fibre volumes in the different layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.