Abstract

Potassium sodium niobate (KNN) is a well known piezoelectric material and a developing candidate for replacing lead based high performance piezoceramics due to limitations of hazardous materials in electronic devices. Lithium substitution in KNN structure leads a crystal transition from orthorhombic to tetragonal symmetry at room temperature and enhances ferroelectric properties. In this study, lithium substituted KNN piezoceramics with high relative densities were prepared by spark plasma sintering (SPS). Densification, crystal structure, microstructure and ferroelectric behavior of the samples were investigated. It was observed that lithium niobate based secondary phases exist in sintered KNN ceramics. These secondary phases showed significant effects on ferroelectric properties. Maximum (Pm) and remnant (Pr) polarizations were determined as 27 and 20 µC/cm2, respectively for pure KNN at the electric field of 20 kV/cm. When the electric field was increased to 30 kV/cm, Pm did not change significantly, but remained below Pr. For Li substituted samples, Pr decreased with increasing Li content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.