Abstract
Friction stir welding (FSW), being an enabling solid-state joining technology, can be suitably applied for the assembly of lightweight magnesium (Mg) alloys. In this investigation, friction stir lap welded (FSLWed) joints of AZ31B-H24 Mg alloy were characterized in terms of the welding defects, microstructure, hardness, and fatigue properties at various combinations of tool rotational rates and welding speeds. It was observed that the hardness decreased from the base metal (BM) to the stir zone (SZ) across the heat-affected zone (HAZ) and thermomechanically affected zone (TMAZ). The lowest value of hardness appeared in the SZ. With increasing tool rotational rate or decreasing welding speed, the average hardness in the SZ decreased owing to increasing grain size, and a Hall–Petch-type relationship was established. Fatigue fracture of the lap welds always occurred at the interface between the SZ and TMAZ on the advancing side where a larger hooking defect was present (in comparison with the retreating side). The welding parameters had a significant influence on the hook height and the subsequent fatigue life. A relatively “cold” weld, conducted at a rotational rate of 1000 rpm and welding speed of 20 mm/s, gave rise to almost complete elimination of the hooking defect, thus considerably (over two orders of magnitude) improving the fatigue life. Fatigue crack propagation was basically characterized by the formation of fatigue striations concomitantly with secondary cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.