Abstract

Abstract Cu\Fe–Cr–C metal matrix composites (MMCs) were produced with a reinforcer addition of 6, 9, 12, 15, and 18 wt% Fe–Cr–C by powder metallurgy. The effects of sintering temperatures on Cu-based Fe–Cr–C-reinforced composites were studied using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and hardness test. The electrical conductivity and tensile and fatigue strengths of samples were investigated by the conductivity meter and the tensile and fatigue testing machine. The interface microstructure between Fe–Cr–C and Cu particulates at 1000 °C showed a significant difference. The increase in tensile strength, hardness, and fatigue life gave a proportional change with an increase in Fe–Cr–C particulate vol%. The precipitated carbides and intermetallic compositions reduced electrical resistivity depending on the sintering temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call