Abstract

The distinct advantages of the electromagnetic casting (EMC) process consist in the presence of stirring motions in the melt, which lead to significant grain size reduction in solidified ingot. Furthermore, surface and subsurface qualities are improved due to the absence of ingot mold. However, it is impossible to achieve the aforementioned advantages in conventional direct chill casting (DCC). In order to contrast the before and after heat treatments of the microstructural and mechanical characteristics of EMC and DCC 2024 aluminium alloys, optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffractions (XRD), differential scanning calorimetry (DSC), etc. were carried out. Compared with the DCC ingot, the EMC ingot has better mechanical properties not only in the ascast condition but also in the as-aged condition. The DSC curves show that the EMC specimens have high enthalpy, i.e., the thermal kinetic energy to form precipitates during the aging treatment process. Despite heat treatments applied to the DCC ingot, it fails to attain the same mechanical properties as the EMC ingot. Moreover, considering the expernsive scalping operation for DCC ingots, the EMC technique, which offers a lower manufacturing cost, is one of the best manufacturing methods used in obtaining the ingots of wrought aluminum alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.