Abstract

In this paper, microwave sintering (MS) technology has been applied in the preparation of ferromagnetic-ferroelectric composites. The Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.3</sub> Zn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.6</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.1</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> (NiCuZn) + 15%(wt.)CaCu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sub> (CCTO) composites have been fabricated by both MS technology and conventional sintering (CS) technology, respectively. We found that the fabricating time and sintering temperature were 22 h and 1100 for the CS process and 2 hand 900 for the MS process. Experiments show that MS treated NiCuZn-CCTO composites possess both excellent ferromagnetic and ferroelectric properties. For the composites of NiCuZn+15% CCTO, the real part of permittivity is larger than 360 when the frequency is lower than 1.2 MHz, and the real part of dielectric constant is larger than 2000 when the frequency is lower than 1.0 MHz. Our results indicate that the MS method is a potential important technique in LTCC technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.