Abstract

UV-cured epoxy hybrid composite films were manufactured by efficient and facile cationic photochemical polymerization of 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate mixtures including 5.0 wt% carbon nanofillers of different graphene/multi-walled carbon nanotube (MWCNT) compositions of 10/0, 9/1, 7/3, 5/5, 3/7, and 0/10 by weight ratio. TEM images confirmed that the mixed carbon nanofillers of graphene and MWCNT were well dispersed in the UV-cured epoxy matrix, while MWCNT as a single carbon nanofiller component was aggregated in the matrix. The electrical resistivity of the composite films was thus varied with the increment of the relative MWCNT content in 5.0 wt% carbon nanofillers, i.e., ∼160 Ωcm for the epoxy/graphene composite film, 30∼80 Ωcm for the epoxy/graphene/MWCNT composite films, and ∼16,200 Ωcm for the epoxy/MWCNT composite film. The decreased electrical resistivity of the epoxy/graphene/MWCNT composite films was associated with the interconnected network formation of graphene sheets and MWCNTs. Thus the UV-cured epoxy/graphene and epoxy/graphene/MWCNT composite films exhibited excellent electric heating performance in terms of rapid temperature response, stable maximum temperature, and high electric power efficiency. In addition, the UV-cured epoxy hybrid composite films as electric heating materials were found to be thermally stable up to ∼290 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.