Abstract

This paper investigates mechanical properties and fracture mechanisms of Zr 52.5Cu 17.9Ni 14.6Al 10Ti 5 alloys with various volume fractions of quenched-in crystalline. The alloys with various volume fractions of quenched-in crystalline were prepared by controlled oxygen content of alloys and overheating of the pouring. The phase structure, particle size and volume fraction of all samples were identified by X-ray diffraction, differential scanning calorimeter (DSC) curves and scanning electron microscopy (SEM) photographs. The mean sizes of crystalline increased from 0.3 to 1.3 μm with increasing volume fraction of crystalline from 4 to 13%. The compressive mechanical tests show a ductile–brittle transition with significant decrease in the fracture stress and ductility. Detailed observations in the flow deformation and fracture surface illustrate the relationship between the quenching-in crystalline and the mechanical behavior. The full bulk amorphous Zr-based alloy exhibits typical ductile deformation and fracture behavior. The torn shear bands form the typical vein patterns on the fracture surface. The effects of quenching-in crystalline on the flow deformation and fracture behavior depend on the nature, size, volume fraction and distribution. The particle size of the crystalline in the sense of the width of shear bands is critical. When the size is larger than the width of the shear bands the particles induce an obvious inhomogeneity of the flow deformation and more microcracks by the separation of the interfaces. Nano-scale particles, on the other hand, may increase the viscosity of the flow but do not form microcracks, resulting in particle strengthening of the metallic glass. Increasing the volume fraction of large-scale particles is favorable to leaking the microcracks and brittle fracture. With increasing particle size and volume fraction up to two times the width of the shear band and 10% vol., respectively, the ductile fracture of bulk amorphous alloy completely transforms to brittle fracture under compressive testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.