Abstract

Li2O/B2O3-added Ba1-xSrxTiO3 (B1-xSxT) ceramics, where 0.2 ≤ x ≤ 0.35, were well densified at 920 °C with pure perovskite structure. The dielectric constant, tunability, and figure of merit (FOM) of B1-xSxT ceramics increased with x because of the decreasing Curie temperature (TC). The specimen with x = 0.35, whose TC was close to room temperature, exhibited a large tunability of 27.4 % and FOM of 110 at 10 kV/cm. A compositionally graded multilayer (CGML), which was sintered at 920 °C, was fabricated using B1-xSxT thick films to produce a temperature-stable tunable capacitor, and it evinced a dense microstructure and a continuous interface between the B1-xSxT thick film and the Ag electrode. This CGML capacitor showed a large tunability (51 %) and FOM (150) at 20 kV/cm. It also exhibited stable tunability (17–28 % at 10 kV/cm) at temperatures between 30–90 °C. Therefore, the B1-xSxT CGML capacitor is a suitable candidate for temperature-stable tunable capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.