Abstract

A hot-rolled AZ31Mg alloy sheet was subjected to dynamic plastic deformation parallel to the rolling direction, and microstructural evolutions and mechanical properties of the deformed samples were examined. It has been found that dynamic strain rate could facilitate {10-12} twin nucleation and growth and leads to a lower yield stress of about 20 MPa and an early end to twinning characteristic (happening at a strain point of about 6%) shown in the stress–strain curve. {10-12} twinning mechanism dominates the early plastic deformation; but when plastic strain exceeds ~ 9%, dislocation–slip mechanism instead of {10-12} twinning dominates the later plastic deformation. And this premature transformation of the dominant deformation mechanisms from {10-12} twinning to dislocation slip is caused by dynamic strain rate. The effect of dynamic strain rate on the number of twin nucleations remains unclear, and the more systematic researches are needed in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.