Abstract

The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher flow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, flow softening occurred significantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.