Abstract

In this present work, ZrC particles incorporated Ni-Co composite coatings were electrodeposited. The objective of this article is to study the influence of Co content on the microstructure and properties of Ni-Co-ZrC coatings. Pure Ni and Ni-ZrC coatings have also been electrodeposited for comparison. Surface morphology, chemical composition, microstructure, and microhardness of Ni-Co-ZrC coatings were characterized by scanning electron microscopy, energy dispersive spectrometer, x-ray diffractometer, and Vicker microhardness tester. The potentiodynamic polarization technique was applied to measure the corrosion behavior of the coatings. By increasing Co concentration in electrolyte, Co content of the coatings was modified from 0 to 80 wt.% and ZrC particles content of the coatings was reduced. As the Co content increased, the dominant phase structure was changed from face centered cubic to hexagonal close packed crystal structure. Surface morphology of the Ni-Co-ZrC coatings was changed from nodular to sharp corner structure, and finally branched morphology with increasing Co content of the coating. Among the electrodeposited coatings, Ni-Co-ZrC coating with 42 wt.% Co content exhibited the highest microhardness. The corrosion potential of the coating was shifted to more positive with increasing the Co content from 0 to 64 wt.%. The lowest corrosion rate of 4.507 × 10−7 g·h−1·cm−2 was found for Ni-Co-ZrC coating at the Co content of 75 wt.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call