Abstract

The (001)-oriented surface of epitaxial off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys was studied in both austenitic and martensitic phases. Scanning tunneling microscopy (STM) imaging of the austenitic surface reveals a well-ordered and reconstruction-free surface exhibiting predominantly Mn–Ga termination. We found that only one of the two atomic species (Ga or Mn) is visible in STM, which is attributed to a pronounced geometric corrugation of the surface layer. After a transformation of the sample from the initial austenitic phase to the martensitic phase upon a high-temperature annealing step, a thorough investigation of the martensitic surface was conducted. On a larger scale, pronounced corrugation lines arise from the macroscopically twinned surface. A second corrugation feature is found on a distinctly smaller scale and is shown to originate from the modulated nature of the martensitic film structure. The irregularly spaced corrugation lines support the model of adaptive martensites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call