Abstract
The vacuum level in micro-electro-mechanical system devices needs to be achieved and maintained using non-evaporable getter film technology. Zr–Co–RE getter films are deposited by direct current (DC) magnetron sputtering using krypton (Kr) as the sputtering gas. The influence of sputtering gas pressure and DC sputtering power on the microstructure and adsorption characteristics of films is investigated. Zr–Co–RE films deposited at different gas pressures all grow in a columnar shape. Films grown at low Kr pressures are relatively dense and have a structure with fewer cracks, whereas high Kr pressures result in a uniform cluster and columnar structure with more gaps and micro-cracks. In addition, it is revealed that DC sputtering power has great influence on the film structure and adsorption performance. The films deposited at low sputtering power contain more micro-cracks, which are distributed uniformly. At high sputtering power, the cluster structure is not obvious. Consequently, high Kr pressures and low sputtering power are beneficial to improve the adsorption performance. Hydrogen adsorption tests are carried out using a special vacuum system, keeping the pressure constant. The highest initial adsorption speed is 89 (ml/s)/cm2, obtained at 4.0 Pa Kr pressure and 300 W sputtering power. Meanwhile, the Zr–Co–RE films deposited under these conditions have excellent adsorption stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.