Abstract

The microstructure and abrasive wear performance of a novel wear-resistant steel designed based on the CALPHAD approach were characterized and evaluated. The steel exhibited distinct improvements over conventional high chromium cast iron through the precipitation of micron-sized M7C3 carbides from austenite via desolation transformation, resulting in a more uniform distribution with smaller sizes and desirable shapes. Moreover, the steel incorporated micron-sized carbides (M7C3, VC, and Mo2C) and submicron carbides (M7C3 and VC) as hard reinforcing phases, while nano-sized carbides (Mo2C, M7C3, and M3C) contributed to dispersion hardening. The wear resistance and impact-abrasive wear resistance of the steel were 1.8 times and 1.7 times superior to that of KmTBCr26 under identical wear conditions, respectively. These results indicated that the modified features of the micron-sized M7C3 carbides effectively mitigated undesirable phenomena such as cracking and spalling during the wear process, leading to improved impact-abrasive wear resistance in this steel. The exceptional wear resistance was attributed to the synergistic effect of multiphase and multiscale carbides, demonstrating the effectiveness and potential of CALPHAD-inspired design strategies in developing advanced wear-resistant materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call