Abstract

In this work, in situ synthesis with infiltration casting and subsequent heat treatment was applied to fabricate vanadium carbide (V8C7) particulate-reinforced iron matrix composites. The microstructure and wear-resistance of V8C7 particulate-reinforced iron matrix composites with different volume fraction were studied using scanning electron microscopy, X-ray diffraction, and wear testing. The V8C7 particles were uniformly distributed in the matrix, and the size of the V8C7 reinforcement was 2–12μm. The relative wear resistance of the composites initially increases decreases with higher V8C7 volume fractions. The best wear resistance of the composites was 21.2 times higher than that of gray cast iron under a 20N load. This was achieved at 24% V8C7 volume fraction. Wear of the composites manifests as grooves, broken carbide particles, and re-embedment of wear debris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.