Abstract

ABSTRACTThe main aim of this article is to present a robust microstructural topology optimization methodology for structural–acoustic coupled systems with multi-scale random parameters. During the microstructural topology optimization, both the uncertainty at the macro-scale, which comes from the physical parameters of the acoustic medium or the external load, and the uncertainty existing in the constituent material properties of the microstructure at the micro-scale are considered as random parameters. A homogenization-based probabilistic finite element method (HPFEM) is first developed for quantifying the structural–acoustic system with multi-scale random parameters. The use of the HPFEM transforms the problem of microstructural topology optimization with multi-scale random parameters to an augmented deterministic microstructural topology optimization problem. This provides a computationally cheap alternative to Monte Carlo-based optimization algorithms. A numerical example of a hexahedral box is given to demonstrate the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.