Abstract

We consider scalar waves in periodic media through the lens of a second-order effective i.e. macroscopic description, and we aim to compute the sensitivities of the germane effective parameters due to topological perturbations of a microscopic unit cell. Specifically, our analysis focuses on the tensorial coefficients in the governing mean-field equation – including both the leading order (i.e. quasi-static) terms, and their second-order companions bearing the effects of incipient wave dispersion. The results demonstrate that the sought sensitivities are computable in terms of (i) three unit-cell solutions used to formulate the unperturbed macroscopic model; (ii) two adoint-field solutions driven by the mass density variation inside the unperturbed unit cell; and (iii) the usual polarization tensor, appearing in the related studies of non-periodic media, that synthesizes the geometric and constitutive features of a point-like perturbation. The proposed developments may be useful toward (a) the design of periodic media to manipulate macroscopic waves via the microstructure-generated effects of dispersion and anisotropy, and (b) sub-wavelength sensing of periodic defects or perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call