Abstract

A new near β-Ti alloy Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe (Ti-5321) with a unique combination of high strength and good fracture toughness was designed. The microstructure was tailored by changing the solution and ageing conditions, and the influences of microstructural evolution on tensile properties and fracture toughness of the alloy were investigated. The results showed that the volume fraction and size of primary α phase were decreased with increasing the solution temperature, while the morphology of secondary α precipitates was related to ageing temperature. The ultimate tensile strength (UTS), total elongation (EL) and fracture toughness can be achieved in a range of 1147–1439MPa, 3–26% and 57–76MPam1/2, respectively, depending on the heat treatment parameters. An excellent balance of high strength and good ductility was realized after the solution treatment at 830°C and ageing at 620°C for 480min, in which the UTS, EL and fracture toughness were 1238MPa, 20% and 73MPam1/2, respectively. Morphological features of the fractography were discussed against the different microstructural morphologies, and this provided further information on the fracture behavior of the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.