Abstract
Thermal stability of a conventional 9Cr-1Mo ferritic/martensitic steel submitted to a thermomechanical treatment has been investigated by means of an in-situ annealing experiment up to 700 °C. For comparison, same experiment was carried out in the as received material, before thermomechanical treatment. The results showed an evolution of the microstructure in both cases, more acute for as received material. Before thermomechanical treatment, during annealing small precipitates within grain grew significantly, new ones precipitated and dislocations started to move around 600 °C, finding no effective obstacles to their movement and disappearing at grain boundaries and the free surface. After thermomechanical treatment, the microstructure developed was much more stable. Only a slight increase in the original precipitates size was observed and the dislocation structure remained stable after annealing. To compare the results of in-situ experiments, short term heat treatments up to 700 °C were carried out for both materials on bulk pieces. The principal difference observed was the dislocation density in the case of as received material. After in-situ experiment, the analyzed area was free of dislocations while after heat treatment a certain density of dislocations remained within grains. This fact can be related to the proximity of the free surface in the case of thin foils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.