Abstract

Abstract The cyclic deformation behaviour of ultrafine-grained (UFG) copper produced by equal-channel angular pressing was investigated. Special attention was paid to the parameters governing cyclic softening and cyclic grain coarsening. UFG copper shows significant cyclic softening for the tests performed at intermediate plastic strain amplitudes Δep1/2, that is in the range 2 × 10−4 ≤ Δepl/2 ≤ 1.0 × 10−3. Within this range, the cyclic softening as well as the intensity of grain coarsening increase with decreasing plastic strain amplitude. By contrast, under stress control, corresponding to a plastic strain amplitude range 2.4 × 10−5 ≤ Δepl/2 ≤ 1.2 × 10−4, cyclic softening as well as the intensity of grain coarsening decrease with decreasing plastic strain amplitude. Furthermore, cyclic softening and grain coarsening were also found to be enhanced by decreasing the deformation rate (and thus increasing the test time) and/or by increasing the temperature. These findings indicate that the responsible micro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call