Abstract

The aim of this study was to show the effects of small silica additions on the microstructures and mechanical properties of 3 mol% yttria-stabilised zirconia (3Y-TZP) ceramics. Experiments were conducted on different batches of 3Y-TZP (pure to 2.5 wt% silica-doped). Microstructures were characterised mainly by transmission electron microscopy (TEM), but also by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Silica was found at triple junctions, but neither at grain boundaries nor in the lattice. Undoped zirconia ceramics exhibited faceted grains and significant internal stresses, while doped zirconias showed a much more rounded microstructure and a lower level of internal stresses. Low-temperature degradation (LTD) and slow crack growth (SCG) measurements were conducted on the different batches. The addition of silica strongly increases LTD resistance without affecting the SCG behaviour. The microstructural origins of the different behaviours are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.