Abstract

The Indian PHWR uses Zr-2.5% Nb pressure tubes and its in-reactor performance mainly irradiation creep and growth depends strongly on its microstructure. A detailed microstructural examination was carried out on unirradiated pressure tubes off-cuts and an irradiated pressure tube S-07 of KAPS-2 (operated for 8 effective full power years (EFPYs)), Microstructural characterization was carried out using transmission electron microscopy. Microstructual observation of un-irradiated off-cuts shows the lamellar morphology of the -Zr along with the -phase present as stingers between two alpha laths as well as fine and coarse beta globules. The size of -Zr lamellae was found to be in the range from 0.17 to 0.2 m, 1.8 to 2.4 m and 1.7 to 2.8 m in the radial, circumferential and axial direction respectively (aspect ratio of 1:7:8). TEM-EDS analysis showed composition of the  phase tin the range of 15-50 wt%Nb. The irradiated pressure tube samples obtained from 13 locations were showing average alpha grain width, grain length and aspect ratio in the range of 0.17-0.27 micron, 1.7-2.3 micron and 7.1-8.5 respectively. Extensive modification in beta morphology could be seen at the high flux and high temperature regions. The  phase was observed to have globulised completely in many regions. They were present at the interface of -Zr laths as well as within the lath. The Nb concentration of the  phase appeared to have increased as the volume fraction had reduced. The microstructure details of irradiated and un-irradiated pressure tubes obtained in this study is expected to help in modeling the dimensional change occurring during irradiation in reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.