Abstract

Micro-structural evolution in the near-surface region of AISI 8620 steel subjected to multiple laser shock processing (LSP) impacts were investigated by means of cross-sectional optical microscopy (OM) and transmission electron microscopy (TEM) observations. Micro-structural evolution process subjected to multiple LSP impacts can be described as follows: (i) the parallel lamellar pearlites are broken into bitty pearlites, and dislocation activities simultaneously led to the formation of dislocation lines (DLs) and dislocation pile-ups in original grains; (ii) bitty pearlites were all broken into Fe 3C granules, and dislocation movement made Fe 3C granules disperse near subgrain boundaries and led to subgrain boundaries separating individual cells, and (iii) subgrain boundaries were refined to grain boundaries. Multiple LSP impacts on AISI 8620 steel had dual-function: the refinement of coarse grains in the near-surface region by dislocation movement and dispersion strengthening of C atoms which cut cementite and diffused into the ferrite by moving dislocations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call