Abstract

Two grades of low-carbon steel, one containing vanadium and the other without vanadium, were subjected to equal channel angular pressing (ECAP) at 623 K up to an effective strain of ∼4. After equal channel angular pressing, a static annealing treatment for 1 hour was undertaken on both pressed steels in the temperature range of 693 to 873 K. By comparing the microstructural evolution during annealing and the tensile properties of the two steels, the effect of the addition of vanadium on the thermal stability of ultrafine-grained (UFG) low-carbon steel fabricated by intense plastic straining was examined. For the steel without vanadium, coarse recrystallized ferrite grains appeared at annealing temperatures above 753 K, and a resultant degradation of the strength was observed. For the steel containing vanadium, submicrometer-order ferrite grain size and ultrahigh strength were preserved up to 813 K. The enhanced thermal and mechanical stabilities of the steel containing vanadium were attributed to its peculiar microstructure, which consisted of ill-defined pearlite colonies and ultrafine ferrite grains with uniformly distributed nanometer-sized cementite particles. This microstructure resulted from the combined effects of (a) the preservation of high dislocation density providing an effective diffusion path, due to the effect of vanadium on increasing the recrystallization temperature of the steel; and (b) precipitation of fine cementite particles at ferrite grain boundaries through the enhanced diffusion of carbon atoms (which were dissolved from pearlitic cementite by severe plastic straining) along ferrite grain boundaries and dislocation cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.