Abstract

Reduced activation ferritic/martensitic steels are leading candidates for blanket/first-wall structures of the D-T fusion reactors. In fusion application, structural materials will suffer cyclic stresses caused by repeated changes of temperature and electromagnetic forces according to reactor operation scenarios. Therefore, creep–fatigue behaviors are extremely important to qualify reduced activation steels as fusion structural materials. In this work, microstructural stability of reduced activation ferritic/martensitic steels under various external stresses, such as constant stress cyclic stress, was studied. The materials used are JLF-1 steel (9Cr–2W–V,Ta) and JLS-2 steel (9Cr–3W–V,Ta). The microstructure inspection by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) was performed following creep rupture tests, fatigue and creep–fatigue tests at elevated temperatures. In order to examine precipitation morphology in detail, the improved extracted residue and extracted replica methods were applied. From the microstructural observation of creep rupture-tested specimen, intergranular precipitates such as M 23C 6 and Laves phase coarsened by applying the static stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.